GreyCTF 2023 - OT
Last modification on
Challenge
Oblivious Transfer is amazing :D
Challenge Files | Solution Files
main.py
import secrets
import hashlib
from Crypto.Util.number import isPrime, long_to_bytes
FLAG = b'grey{fake_flag}'
e = 0x10001
def checkN(N):
if (N < 0):
return "what?"
if (N.bit_length() != 4096):
return "N should be 4096 bits"
if (isPrime(N) or isPrime(N + 23)):
return "Hey no cheating"
return None
def xor(a, b):
return bytes([i ^ j for i,j in zip(a,b)])
def encrypt(key, msg):
key = hashlib.shake_256(long_to_bytes(key)).digest(len(msg))
return xor(key, msg)
print("This is my new Oblivious transfer protocol built on top of the crypto primitive (factorisation is hard)\n")
print("You should first generate a number h which you know the factorisation,\n")
print("If you wish to know the first part of the key, send me h")
print(f"If you wish to know the second part of the key, send me h - {23}\n")
N = int(input(("Now what's your number: ")))
check = checkN(N)
if check != None:
print(check)
exit(0)
k1, k2 = secrets.randbelow(N), secrets.randbelow(N)
k = k1 ^ k2
print("Now I send you these 2 numbers\n")
print(f"pow(k1, e, N) = {pow(k1, e, N)}")
print(f"pow(k2, e, N+23) = {pow(k2, e, N + 23)}\n")
print("Since you only know how to factorise one of them, you can only get one part of the data :D\n")
print("This protocol is secure so sending this should not have any problem")
print(f"flag = {encrypt(k, FLAG).hex()}")
print("Bye bye!")
Overview
We are presented with the source code of a Python servlet that asks the
client for a number as input and outputs an encrypted flag. The goal is to
choose the input number such that the resulting flag may be decrypted without
knowledge of k1
and k2
, which are chosen randomly in the encryption process.
The input number corresponds to a positive 4096-bit modulus N
,
and determines the bound for k1
and k2
chosen by secrets.randbelow(N)
.
The values pow(k1, 0x10001, N)
and pow(k2, 0x10001, N+23)
are returned to
the user, along with the flag, encrypted with
SHAKE256 using
k1 ^ k2
as the encryption key. The server enforces that neither
N
nor N+23
are prime.
Analysis
To recover k1
and k2
from the result of their modular exponentiation,
it is necessary to calculate the value of the
Carmichael's totient function
λ(n)
. Like in
RSA,
this is to determine the value d
which can reverse the modular exponentiation,
calculated as the modular inverse of e
in respect to λ(n)
:
such that
so long as m
is coprime to n
.
As such, the goal is to choose a number N
such that the prime factorization
of N
and N+23
are known.
Solution
If we choose N = 23*n
such that N+23 = 23*(n+1)
, the problem is reduced
to finding a n
and n+1
whose prime factorization is known. Choosing p1 = n+1
as a
safe prime
ensures that n = 2*p2
where p2
is the corresponding
Sophie Germain prime.
Thus the prime factorization of N
and N+23
are (23,2,p2)
and (23,p1)
respectively.
solve.py
from pwn import *
from math import lcm
from Crypto.Util.number import isPrime, long_to_bytes
def checkN(N):
if (N < 0):
return "what?"
if (N.bit_length() != 4096):
return "N should be 4096 bits"
if (isPrime(N) or isPrime(N + 23)):
return "Hey no cheating"
return None
def xor(a, b):
return bytes([i ^ j for i,j in zip(a,b)])
def decrypt(key, msg):
key = hashlib.shake_256(long_to_bytes(key)).digest(len(msg))
return xor(key, msg)
# generated with: openssl dhparam 4091
# might take multiple tries to hit 4096-bit N
p = """
07:79:28:c9:e4:cf:f8:bb:ee:5e:88:73:32:40:88:
08:2f:85:d8:e5:94:d0:c9:9b:ea:29:73:3b:6a:a7:
1d:ff:f7:c6:a2:96:cf:b9:a4:2f:a8:b1:26:ab:ec:
15:ae:14:06:89:ee:67:1e:55:de:89:db:b6:61:41:
5d:ff:0c:09:3f:04:09:85:98:e5:5c:3e:95:a2:5b:
a5:e9:0e:8b:4e:0a:7b:ea:eb:4b:d3:5f:10:fd:2e:
a6:8b:2a:91:21:a2:b5:c0:95:74:67:69:9c:76:95:
5d:8c:a5:db:a7:1a:b1:9b:84:35:95:98:fd:77:41:
05:68:da:84:0b:13:d4:bb:69:05:6e:92:57:f1:6a:
da:ed:7b:57:ae:dc:d0:96:9e:78:e5:35:cf:7c:1e:
3b:26:db:10:0d:aa:85:56:ae:27:ca:ea:f6:ef:b7:
d7:9f:58:02:b3:83:73:18:7d:f2:af:7b:a2:ba:63:
de:79:d5:cf:f1:66:37:2c:cf:8b:39:dc:af:1b:9d:
c2:b5:60:78:f8:a6:45:e9:7d:4c:34:a3:ec:3a:4e:
64:13:a9:de:f0:94:c9:d9:c8:d1:ee:e3:41:09:f1:
94:1c:e0:8e:00:9d:d3:80:51:84:37:2d:08:07:e6:
cb:83:d4:43:de:1c:84:ae:81:1a:04:9c:4b:3b:27:
7e:2a:aa:ac:e4:62:4f:ce:ee:5b:38:d0:cc:48:d3:
5e:17:fe:b7:83:98:4b:9f:8e:55:aa:c6:98:c3:66:
e9:10:eb:e9:28:9d:b8:a2:90:64:4a:24:bc:ea:d7:
0c:19:7f:6b:ae:5f:ea:03:25:0d:1e:ac:e1:7f:98:
18:2f:19:99:81:ae:79:29:67:5d:08:22:f7:59:54:
d0:07:07:30:3b:52:6a:3b:de:11:75:a7:f4:28:fc:
20:f4:be:f3:a0:6e:b4:2a:d6:20:26:21:61:54:02:
61:8c:c6:6b:73:43:46:23:57:5a:39:67:c2:95:2b:
dd:1b:4a:f1:94:50:c4:77:40:a7:30:31:ee:6e:3e:
6b:5a:51:fe:0a:e7:d1:80:98:c6:12:28:00:8a:94:
43:bb:9e:38:bb:24:6f:3c:2f:04:e3:71:4b:48:85:
b8:08:4d:f3:12:73:47:a1:38:2d:85:22:d3:dd:81:
1a:ca:eb:42:df:cf:32:5a:e7:23:a1:98:04:08:a7:
ae:87:7b:4e:ff:c2:35:a1:04:23:c1:9d:ae:46:1e:
43:9f:e8:5d:a7:96:b0:72:09:db:a2:ad:3d:c8:fe:
e4:76:71:15:60:d9:ea:0e:d8:d0:c5:b7:0a:76:3b:
29:c3:94:34:8d:bd:75:cd:9a:d5:ac:f2:38:13:02:
35:bf
"""
p = int.from_bytes(bytes([int(v,16) for v in p.replace("\n", "").split(":")]), "big")
import math
print(math.log2(p))
assert(isPrime(p) and isPrime(p//2))
pp = p // 2 # 4090.? - 1 = 4089.?
e = 0x10001
n = pp * 2 * 23 # 4089.? + 1 + 4.523 = 4094.? or 4095.?
n2 = p * 23
print(math.log2(n))
assert(checkN(n) is None)
while True:
io = process("python3 ./chall/main.py".split())
io.sendline(str(n).encode())
io.readuntil(b" = ");
r1 = int(io.readline())
io.readuntil(b" = ");
r2 = int(io.readline())
io.readuntil(b" = ");
flag = bytes.fromhex(io.readline().strip().decode())
carmichael = lambda *a: lcm(*[v-1 for v in a])
d1 = pow(e, -1, carmichael(pp, 2, 23))
k1 = pow(r1, d1, n)
d2 = pow(e, -1, carmichael(p, 23))
k2 = pow(r2, d2, n2)
out = decrypt(k1 ^ k2, flag)
if b"grey" in out:
print(out)
break
io.close()